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ABSTRACT

In the advent of big data and machine learning, researchers now have a wealth
of congressional candidate ideal point estimates at their disposal for theory
testing. Weak relationships raise questions about the extent to which they cap-
ture a shared quantity — rather than idiosyncratic, domain—specific factors —
yet different measures are used interchangeably in most substantive analyses.
Moreover, questions central to the study of American politics implicate rela-
tionships between candidate ideal points and other variables derived from the
same data sources, introducing endogeneity. We propose a method, consen-
sus multidimensional scaling (CoMDS), which better aligns with how applied
scholars use ideal points in practice. CoMDS captures the shared, stable asso-
ciations of a set of underlying ideal point estimates and can be interpreted as
their common spatial representation. We illustrate the utility of our approach
for assessing relationships within domains of existing measures and provide a
suite of diagnostic tools to aid in practical usage.
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1 Introduction

Measures of candidates’ positions are the fundamental building blocks for testing theories
related to congressional polarization, accountability, and representation (Canes-Wrone,
Brady, and Cogan 2002; Clinton 2006; Hall 2015; McCarty, Poole, and Rosenthal 2006).
Perhaps the most ubiquitous and longstanding is NOMINATE, a roll-call based estimate
of sitting legislators” ideal points (Poole et al. 2011). The advent of big data and machine
learning has introduced new approaches to constructing ideal points in political science.
Examples of recently proposed approaches include transaction-level campaign finance re-
ceipts (e.g., Bonica 2014, 2018, 2024), campaign website platforms (Meisels 20254), Tweets
(e.g., Barbera 2015; Cowburn and Saltzer 2025), Facebook posts (e.g., Bond and Messing
2015), legislative speeches (e.g., Lauderdale and Herzog 2016), and most recently, LLM-
generated embeddings (Burnham 2024).

Different ideal point estimates depend on not only the specific data sources researchers
have leveraged, but also the behavioral assumptions and estimation approaches used to
construct latent factor models from the underlying data. The extent to which various ideal
point estimates relate to one another is an open question both substantively and method-
ologically: recent evidence suggests that measures are very weakly related within party
(Barber 2022; Meisels 20254; Tausanovitch and Warshaw 2017). While all seek to capture
the common concept of a candidate’s ideal point along a liberal-conservative spectrum, in
reality, each is likely measured with a considerable amount of domain-specificity as well.
As a result, an estimated ideal point will be an unidentifiable mixture of both a true ideal
point! and an idiosyncratic component that is domain and context specific.

In practice, applied researchers are typically interested in a more general latent con-

cept of “ideology” or “positioning”, and are agnostic about specific estimates (and the

!We refer to a maximally general and agnostic conception of a true ideal point as one that simply presents
itself irrespective of particular institutional contexts. We remain agnostic about whether such ideal points
represent candidates’ deeply-held ideologies, strategic positions, or even partisan strength.



data and approach used therein). Instead, questions such as whether candidates are still
responsive to their districts, how extremism impacts candidates’ electoral and fundrais-
ing performances, and how different nominating institutions affect the composition of the
candidate field implicate relatively general conceptualizations of candidate “ideology.”
Despite the aforementioned studies raising questions about whether different measures
capture a common latent concept and related calls to tailor measures to specific applica-
tions (e.g., Caughey and Schickler 2016), scholars engaging in substantive theory-testing
continue to use such ideal point estimates more-or-less interchangeably, ignoring contex-
tual differences.

In this paper, we propose a consensus-based approach which provides a closer approx-
imation of how ideal point estimates tend to be used in practice. The method, consensus
multidimensional scaling (CoMDS), aggregates a set of ideal point estimates across differ-
ent data sources and estimation approaches to construct a consensus ideal point estimate.
This captures the shared, stable associations across source ideal point estimates, and can
be interpreted as their common spacial representation. To help researchers identify the
extent to which different substantive conclusions about U.S. congressional politics and
elections may be specific to idiosyncratic features of specific data sources, we further in-
troduce a projection-based approach to decompose each source ideal point estimate into
two orthogonal components: (1) the shared component that is captured by the consensus
ideal point estimate, and (2) the remaining idiosyncratic component, not captured by the
consensus ideal point estimate.

Unlike existing methods in estimating ideal points with different data sources (e.g.,
Enamorado, L6pez-Moctezuma, and Ratkovic 2021), our proposed method is agnostic to
the underlying behavioral model and data-generating assumptions for the source ideal
point estimates, allowing researchers to encode in domain-specific substantive priors for
each source ideal point estimate. Furthermore, unlike alternative aggregation methods

like principal component analysis (PCA), CoMDS is robust to rotations, rescalings, and



shifts in the source ideal point estimates, and can accommodate settings in which differ-
ent data sources have differential amounts of missingness, allowing for a large degree of
flexibility in methodological implementation.

We elucidate the utility of CoMDS with an application to congressional candidate ideal
points. In addition to the aforementioned weak relationships between existing measures,
another problem is that many research questions implicate candidate ideal points and a
key variable on the other side of the equation which are both drawn from the same data
source. We investigate relationships of substantive interest within the domains of source
measures, demonstrating first that relying on domain—specific ideal points may lead to
conclusions which are overstated at best and incorrectly signed at worst. Moreover, we
show that in the absence of our consensus approach, assessing robustness of relationships
across existing measures leads to results which conflict not only in magnitude but some-
times in sign. In contrast, CoMDS allows researchers to draw meaningful conclusions
about how the ideal point component which is common across existing measures relates
to variables of interest.

The paper proceeds as follows. In Section 2, we provide an overview of ideal point
estimation in political science and review several approaches commonly used in studying
congressional candidate positioning. Section 3 introduces the proposed method, consen-
sus multidimensional scaling, and provides a suite of interpretability and stability tools
to aid in practical usage. In Section 4, we present consensus estimates of candidates’ ideal
points, compare them to original source measures, and re-assess relationships of substan-

tive interest within domains of existing measures. Section 5 concludes.

2 Ideal point estimation in political science

Ideal point estimation interprets a given set of observed data points as being generated

from an underlying behavioral model, which is a function of a latent ideal point. For



example, NOMINATE assumes that a legislator’s probability of voting Yea versus Nay is
a function of the distance between her ideal point and the two alternative policies which
each voting option represents. Researchers then infer the ideal points which maximize the
likelihood of an observed roll-call matrix.

Formally, for a given source of data Y(¥), ideal point estimates Z(*) € R™*" are esti-

mated by assuming an underlying generative model:

VI = g,(Z0) +2, (1)

where different assumptions about the underlying data generating process map to differ-
ent functional forms of g,(-). For example, in the context of roll-call votes, g;(-) is a logistic
function that maps to a legislator’s utility, which dictates whether they vote Yea or Nay.

Notably, the choice of source data and estimation assumptions can result in very differ-
ent ideal point estimates. For example, consider differences between roll-call-based NOM-
INATE versus ideal points estimated from campaign platform text (e.g., Meisels 2025a).
Legislative roll—call votes are taken in an institutional setting which is relatively opaque
to the public. In contrast, the same legislators’ campaign platforms are explicitly public—
facing for purposes of electioneering. With regard to agenda control, candidates are vir-
tually unconstrained in the issues and positions which can be articulated in campaign
platforms, whereas they may only vote upon the issues and in support or opposition to
the proposed policies which reach the floor in Congress. Even two campaign-based data
sources — campaign platforms versus campaign contributions (e.g., Bonica 2014) — dif-
ter critically in whether the activity is performed by the campaign itself or is instead the
observed behavior of an another actor.

Consequently, in the absence of restrictive assumptions, we generally do not expect
ideal points estimated from one source of data to be equivalent to another estimated using

a different source of data (i.e., Z(®) # Z)). However, different measures of candidates’



positions consistently separate Democrats from Republicans even without the inclusion of
any covariates in measurement models. As such, despite relatively weak intraparty corre-
lations, pooled correlations between different ideal point estimates remain exceptionally
strong (Barber 2022; Meisels 20254; Tausanovitch and Warshaw 2017). This suggests that
different measures do capture some common variation. In other words, the estimated
ideal points Z(®) contain both information about the underlying latent ideal point Z*, as
well as idiosyncratic aspects of the source data and functional form choices.

To formalize, we rewrite the model in Equation (1) as:

VI = g, (2" + 1) 4, (2)

where we have decomposed the ideal point estimates Z(®) into (1) Z*, which represents
some hypothetical, true ideal point, and (2) v®) which represents idiosyncratic aspects
specific to the domain of the source ideal point estimate.

Reconciling different methods and approaches for the estimation of ideal points can
be challenging, to put it lightly. Existing work has proposed pooling outcome data from
different sources to fit a joint ideal point estimation model (e.g., Treier and Jackman 2008;
Murray et al. 2013; Quinn 2004). Unfortunately, naive pooling will result in biased esti-
mates when the two datasets have varying amounts of observations and information (e.g.,
Jessee 2016). This problem is especially pronounced in settings where target populations
differ (e.g., Lewis and Tausanovitch 2015; Tausanovitch and Warshaw 2013; Shor and Mc-
Carty 2011).

Alternative approaches have introduced data-adaptive ways to re-weight different data
sources. However, these approaches rely on strong parametric assumptions on the ob-
served outcome data. For example, Enamorado, Lépez-Moctezuma, and Ratkovic (2021)
implicitly assume the different outcomes are normally distributed, and can be linearly de-

composed into a shared ideal point estimate and an idiosyncratic term. In the context of



Equation (2), this implies that every function g,(-) for all data sources is linear in nature.
In practice, researchers would not generally believe that the different behavioral models
that generate the observed data would share the same functional form (nor that they are
necessarily linear with respect to the ideal point estimate). Furthermore, common settings
in practice use data that are binary (i.e., roll call votes) or categorical (i.e., word counts),
neither of which are normally distributed. We provide further discussion about the rela-
tionship between existing methods and our proposed method in Appendix A.1.

In the following section, we introduce a method, consensus multidimensional scaling
(CoMDS) (An and Tang 2025), which estimates the shared component of a set of source
ideal point estimates, which we refer to as the consensus ideal points. Unlike existing ap-
proaches, CoMDS takes in the source-specific ideal point estimates Z*) to construct a con-
sensus ideal point estimate. Because CoMDS is an unsupervised method, it does not rely
on jointly modeling all of the different observed outcomes and can be used without ac-
cess to the underlying outcomes. This is advantageous for several reasons. First, it allows
researchers to preserve their context-specific underlying assumptions on the different be-
havioral models for each source of data. As a result, the outcomes for each source Y'*)
can continue to be mapped to their own, unique behavioral model g (-). Second, it is more
computationally efficient, allowing researchers to directly estimate a consensus ideal point
estimate using pre-existing source ideal points. In Section 4, we apply CoMDS to congres-
sional candidates and demonstrate how consensus ideal points allows for robust investi-
gation of substantive relationships when variables of interest are derived from the same

data as existing source measures.

3 Consensus ideal point estimation with CoMDS

In the following section, we introduce our proposed approach, consensus multidimen-

sional scaling (CoMDS). In Section 3.1, we formalize the optimization problem behind



CoMDS and provide intuition for the estimated consensus ideal point estimate. In Sec-
tion 3.2, we propose a projection-based approach for researchers to decompose the source
ideal point estimates into the consensus ideal point estimate and an idiosyncratic factor.
Finally, Section 3.3 provides two diagnostic tools for interpreting and using CoMDS in
practice: (1) a relative error measure that estimates the individual contributions of each
source ideal point estimate on the consensus ideal point estimate, and (2) a stability anal-
ysis that evaluates the sensitivity of the consensus ideal point estimate to the inclusion of

the different source ideal point estimates.

3.1 Consensus multidimensional scaling (CoMDS)

At a high-level, consensus multidimensional scaling (CoMDS) takes in different source
ideal point estimates Z(*) as input, evaluates the (dis)similarity between each pair of ob-
servations by computing a pairwise distance matrix for each source Z*), and outputs a
consensus ideal point estimate Z* that best preserves the pairwise distances observed in
the source ideal point estimates (An and Tang 2025). Put differently, we can think of the
consensus ideal point estimates from CoMDS as best approximating the shared spatial
representation of underlying source ideal point estimates. Figure 1 visualizes the consen-
sus ideal point estimation workflow.

More formally, suppose we have n candidates and S source ideal point estimation ap-
proaches under study. For each s € {1,..., 5}, let Z) € R"*" represent the estimated
source ideal points from the s ideal point estimation approach. Note that each source
ideal point estimate Z(*) is allowed to have a varying number of dimensions r, and possi-
ble missing values. Without loss of generality, assume the candidates in each source have
been aligned so that the i*" candidate in source s (denoted zgs)) corresponds to the i’ can-

didate in source s’ (denoted zl(-sl) ). Define the missingness indicator ags), where ags) =0
if the s*" source ideal point estimate is missing for candidate ¢ and 1 otherwise. Also, let

Diag(r) denote the set of diagonal matrices of size r x r. Using the source ideal points
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Figure 1: Overview of consensus ideal point estimation workflow

ZW, ... Z, CoMDS estimates the consensus ideal points Z* via the following two step

procedure.

Step 1: Compute dissimilarity between ideal points in each source. For each source

s = 1,...,5 and each pair of candidates 7,5 = 1,...,n, evaluate the pairwise distance

(or dissimilarity) between the ideal points in the s source space: D(S) = dy; (2, z§s)),

where d(x,y) corresponds to an arbitrary distance measure. For our purposes, we focus

throughout the paper on a Euclidean distance metric (i.e., d(x,y) = [|x — y||2).

Step 2: Estimate consensus structure across sources. Using these pairwise distances
ZJ ), CoMDS leverages a generalization of multidimensional scaling (see Appendix A.2
for additional discussion), which was originally developed in the psychometrics literature

(Carroll and Chang 1970), in order to estimate the consensus ideal points Z* via

N . 2
z*, WO W) = argmin Z Z Oz(s Q; () { DE;) - d(W(S)Ziaw(S)Zj> } , (3)
ZeR™*" 1 W—/ h g

<j
W (%) eDiag(r) missingness  distance in distance in
indicators source space consensus space



where r is a pre-specified number of dimensions for the consensus output (typically, r = 1
or 2), W, ... W) are  x r diagonal matrices acting as source-specific weights, and
a§8>a§5> is a missingness indicator equaling 1 if the s™ source ideal points for candidates i
and j exist and 0 if either is missing.

Intuitively, CoMDS ensures that the pairwise distances between two candidates in the
original source ideal point space are similar to the pairwise distances between those two
candidates in the newly-learned CoMDS ideal point space. This means that the consensus
ideal point from CoMDS will span the variation of the source ideal points, thereby serving
as a measure of the shared associations across the different source ideal point measures.

To solve the CoMDS optimization problem given in Equation (3), we use SMACOF
(De Leeuw and Mair 2009), which leverages an iterative majorization-minimization op-
timization scheme with a closed-form constrained update to minimize the objective in
Equation (3). This optimization problem is known to converge linearly (De Leeuw 1988).>

There are several advantages to CoMDS over alternative aggregation approaches. First,
unlike other methods such as MD2S (Enamorado, Lopez-Moctezuma, and Ratkovic 2021)
and PCA (Bonica 2024), CoMDS does not explicitly make any linearity assumptions. Sec-
ond, because CoMDS operates on the pairwise distances between source ideal point es-
timates and allows for source-specific weight matrices W), it will be invariant to un-
derlying rotations, rescalings, and shifts in the source ideal point estimates. Importantly,
such transformations do not fundamentally change the interpretation of the source ideal
point estimates and thus should not change the consensus ideal point estimates. How-
ever, methods such as PCA, which operate directly on the source ideal point estimates
[ZO), ... Z®)], result in aggregations that are sensitive to rescalings or rotations in the un-
derlying latent space of a source ideal point estimate. Moreover, methods like PCA do

not explicitly leverage the grouped feature structure (i.e., each source s corresponds to a

group of features Z(*) of possibly varying dimensions). Consequently, in settings when

2 As a reference, for a rank-1 problem with 2000 candidates and 3 sources, CoMDS took around 2 minutes to
converge with a tolerance of 1E-6 using a Macbook Pro with an Apple M3 Pro chip.
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there are ideal point estimates with varying dimensions, such methods will implicitly con-
struct a consensus ideal point estimate that overweight sources with more dimensions re-
gardless of that source’s quality. CoMDS, in contrast, gives equal weight to each source
in the objective function (3) and is specifically designed to learn the consensus or shared
structure across all input sources. Simulations illustrating these differences are provided
in Appendix B.1-B.3.

Finally, we highlight that CoMDS can naturally accommodate differential amounts of
missingness in the underlying data. This allows researchers to input different ideal point
estimates that span varying target populations (i.e., legislators, candidates, etc.) and con-
struct a consensus ideal point estimate, even in the presence of nonignorable missing data.
CoMDS will embed observations with missing data into a common space alongside com-

plete case observations. See Appendix B.4 for an extended discussion.

3.2 Estimating idiosyncratic ideal point components

Whereas consensus ideal points enable investigation into substantive relationships be-
tween candidates” domain-agnostic ideal points and variables of interest, researchers may
also be interested in how different conclusions about accountability, representation, and
polarization are specific to certain candidate behaviors (e.g., Meisels 2025a). Estimating
the idiosyncratic components of original source ideal points can shed light on these po-
tential differences across domains. We propose a projection-based approach that decom-
poses the source ideal point estimates Z*) into two parts: (1) the portion represented by
the consensus ideal point estimate Z*,and (2) an idiosyncratic factor 7(*).

To do so, define the consensus projection matrix P* := Z*(Z*7Z*)~'Z*T. With P*,
we can project the original source ideal point estimates Z* into the consensus space via
P*Z®). Intuitively, P*Z(®) captures the portion of the s source ideal point estimate that

is represented by the consensus ideal point estimate. We then estimate the idiosyncratic
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factor for source ideal point s (i.e., 7*)) as the residual term:
P =2 - Pz = (I-P") 2,

where Iis an n x n identity matrix. By construction, the estimated idiosyncratic factor 7(*)
will be orthogonal to the consensus ideal point estimate Z*. Researchers can equivalently
interpret 2(*) as the residual part of the source ideal point estimate that cannot be explained
by the consensus ideal point estimate Z*.

The magnitude of 7(*) should be interpreted relative to the original, source ideal point
estimate scale. For example, NOMINATE ranges from —1 to 1, where values close to 1 are
interpreted as highly conservative, and values close to —1 are thought to be highly liberal.
In such a setting, when the idiosyncratic factor 7(*) > 0, this implies that relative to the
consensus ideal point estimate, NOMINATE has overestimated an individual’s conservati-
vatism. In contrast, 7*) < 0 implies that NOMINATE has overestimated an individual’s

liberalism relative to her consensus ideal point estimate.

3.3 Diagnostics for CoMDS

In the following subsection, we introduce two diagnostics for better understanding each
source ideal point measure’s contribution to the consensus ideal point estimates. The first
is a relative error measure that serves as a normalized proxy for how similar the source
ideal points are to the consensus ideal points. Second, we propose a leave-one-out sta-
bility analysis to evaluate how consensus ideal point estimates change in response to the

omission of different source ideal points.

Relative Error Measure. To begin, we propose a relative error measure that evaluates
the individual contribution of each source ideal point to the consensus ideal point esti-
mate. This is informative of the relative extent to which an existing candidate ideal point

measure is idiosyncratic — in particular, how much of an original source measure remains
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unexplained by the component which is common across the source measures. Substan-
tively, the relative error diagnostic illuminate whether patterns within a certain domain
of candidate activity are substantially orthogonal to the common patterns found across
contexts of candidate activity, for instance.

Formally, we define the relative error for a source ideal point estimate Z(*) as the squared
difference between the pairwise distances in the the s source ideal point estimate and
the consensus ideal point estimate, compared to the total squared difference across all .S

source ideal points:

h

error between st” source ideal points and consensus ideal points

A\

. 1 S S s s N R R . ™~
AG) Y aiai{d(z?, 7)) — dWDz;, Wzr))2
RelError(Z(S)) = — i<j |
]_ S S s s N . R »
> A Za( 0 {d(2),2) — AWz, Whz))2
s=1 i<j

/

Vo
total error, summed across all sources

where A®) = Y. i ags)ozf). This source-specific quantity always lies between 0 and 1,
where a relative error close to 0 implies that the source ideal point estimate and the con-
sensus ideal point estimate are very similar, whereas a relative error close to 1 implies that
the source ideal point estimate and the consensus ideal point estimate are very different.
The sum of the relative errors across all S sources equals 1. Consider the extreme setting
when the relative error for source s is exactly equal to 1. This implies the relative error
for the other sources must be 0. Substantively, this means that source s is orthogonal to
all other source ideal point estimates (i.e., there is no shared information), while all other
sources are identical to one another (up to a rescaling) as well as the consensus ideal point
estimate. On the other hand, if the relative error is approximately ¢ for each source, then
this implies that the consensus ideal point estimate from CoMDS is equally similar to each

of the sources.

In practice, scholars rarely have a “ground truth” measure of an individual’s ideal
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point. As such, a large relative error does not necessarily imply that a source ideal point
is necessarily less “correct” than other sources. However, a large relative error does imply
that a source ideal point deviates more from the consensus ideal point estimate, and that
there is substantial variation in the source ideal point that is not shared by the other source
ideal point estimates. For further intuition behind this relative error diagnostic, we refer

readers to an illustrative simulation study in Appendix C.

Leave-one-out Stability Analysis. Another way researchers can evaluate the contribu-
tion of each source ideal point on the consensus ideal point is through a leave-one-out
evaluation. To evaluate the stability of the consensus ideal point estimates to the inclusion
or exclusion of different source ideal points, we recommend researchers omit a single data
source and re-estimate CoMDS to see if there are large changes in the estimates. We can
then evaluate the similarity between the original consensus ideal point estimates Z* and
the re-estimated consensus ideal point estimates.

When estimating a one-dimensional (r = 1) consensus ideal point, a popular similarity

metric is magnitude of the Pearson correlation:
p(s) = leor(Z2 ), Z7)],

where Z* , corresponds to the estimated consensus ideal points using CoMDS without
including the s™ source ideal point estimate. When estimating a multi-dimensional (r >
1) consensus ideal point, researchers can instead measure the similarity by computing
the subspace correlation between the original consensus ideal point subspace and the re-
estimated consensus ideal point subspace when leaving out the s source. A common
measure of subspace correlation is the average squared singular value of the cross-product

matrix between the two subspaces (Bjorck and Golub 1973):

1 '
p(s) = - Z d?,
=1
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where d; is the /' singular value of ortho(Z*)Tortho(Zj(s)), and ortho(A) denotes an or-
thogonal basis that spans the same subspace as the matrix A.

At a high level, p(s) measures the degree of alignment between Z* and Z’i(s), where a
larger value close to 1 implies that Z* and Z*_(s) are highly similar while a value close to 0
implies that Z* and Z* (s) are orthogonal. In settings when dropping a single source ideal
point results in large changes in the consensus ideal points, then p(s) will be low. This
implies that removing the s™ source results in large changes in the resulting consensus
ideal point estimates. This occurs in settings when the source ideal point being omitted
is very different than the other source ideal points. In contrast, if p(s) is high, then this
implies that the s source is similar to the other inputs. As a result, the s source does
not change the consensus ideal point estimate very much. This may occur in settings when

multiple source ideal points are similar.

4 Congressional candidate ideal points

In this section, we apply CoMDS to estimate the ideal points of candidates for the US
House. We begin by estimating consensus ideal points based on NOMINATE, CF scores,
and campaign platform positions. Despite weak relationships between these three classes
of measures, our consensus estimates nevertheless retain substantial relationships with
each, including recovering intraparty correlations in cases where one source measure is
essentially uncorrelated with others. We then use the consensus measure to assess rela-
tionships of substantive interest within domains of the source measures. In particular,
the findings demonstrate that relying on existing measures derived from the same source
of data as a variable of interest may lead to conclusions which are overstated at best and
incorrectly signed at worst. Moreover, we uncover numerous cases in which typical “ro-
bustness checks” — comparing results across different existing ideal points — cannot pro-

vide satisfactory reconciliation when performed in the absence of a consensus approach.
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These analyses highlight the broad utility of our consensus ideal points for recovering
a common spatial representation in cases where existing ideal points exhibit substantial

disagreement, yet researchers would otherwise interpret them interchangeably.

4.1 Existing measures of House candidate ideal points

While CoMDS can accommodate virtually any number of measures of congressional can-
didates’ ideal points, here we focus our attention on three classes of existing estimates.
Conceptually, these ideal points may represent sincerely-held ideological beliefs, strate-
gic positioning, partisan strength, or a combination therein (e.g. Lee 2009; McCarty 2016).
In each case, however, the general quantity of interest is a candidate’s position along a left—
right continuum.

The first ideal point, NOMINATE, estimates legislators’ ideal points along two dimen-
sions based on a spatial choice model of roll—call voting (Lewis et al. 2025; Poole and
Rosenthal 1997). Legislators” vote-level decisions are assumed to be solely a function of
the distance between their ideal points and the alternative policies represented by Yea ver-
sus Nay votes. Given that NOMINATE is based on legislative behavior, it offers coverage
for the universe of legislators but necessarily excludes those who fail to win election to
Congress.

Second, we include three flavors of campaign finance (CF) scores (Bonica 2014,2018, 2024).
The main variant applies correspondence analysis to a matrix of campaign contributions,
implicitly assuming that contributions are made on the basis of similarity between donor
and recipient. While classic CF scores are static, a second variant is temporally dynamic.
The third, DW-DIME, uses machine learning to map contributions onto the NOMINATE
space in order to closely predict roll-call behavior. In general, CF scores cover candidates
who received contributions from a minimum threshold of contributors who themselves
contributed to a minimum threshold of other recipients.

The final measure estimates the positions of issue platforms found on candidates’ cam-
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Figure 2: Relationship Between Source Ideal Point Measures
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paign websites (Meisels 20254). This dynamic measure relies on the ubiquitous wordfish
text scaling algorithm, based on a Poisson IRT model which assumes that word usage is
informative of a latent, unidimensional ideal point (Slapin and Proksch 2008). Platform
positions cover candidates who chose to host a campaign website that included any issue
content.

These existing measures are based on very different sources of data on candidates” ac-
tivities, which are respectively assumed to be generated by very different processes, and
estimation of each relies upon a different statistical approach. For these reasons, it is per-
haps unsurprising that past work has shown that different estimates of candidates” ideal
points are only weakly related within party (Barber 2022; Meisels 20254; Tausanovitch and
Warshaw 2017). This is confirmed by Figure 2: correlations between the three main mea-
sures are relatively strong overall yet highly variable within party. Particularly notable
is the essentially nonexistent Democratic relationship between CF scores and both of the

other measures, echoing results in Barber (2022) and Meisels (2025a).

3Complete cases are shown in Appendix E, which reveals modestly stronger correlations between CF scores
and platform positions.
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4.2 Constructing a consensus ideal point estimate

Despite evidence that these measures are estimated with a considerable amount of domain
specificity, they are used and interpreted interchangeably in the vast majority of substan-
tive applications. As articulated straightforwardly by Tausanovitch and Warshaw, “ap-
plied empirical studies almost uniformly use the estimates from these models as measures
of candidates” ideology” (2017, 168). Because researchers studying topics such as polar-
ization, representation, or accountability are typically interested in characterizing candi-
dates” general, domain—-agnostic extremism versus moderation or liberalism versus con-
servatism, contextual differences between measures are downplayed and typically treated
as little more than a nuisance.*

Our consensus-based approach provides a closer approximation of how existing esti-
mates of candidates” ideal points tend to be used in practice. We estimate the consensus
ideal points of House candidates from 2016 to 2024 using the roll-call-based, contribution—
based, and platform-based measures discussed above. Since CoMDS can handle missing
data without relying on imputation, we include all candidates captured by at least two of
the three measures. In effect, we are able to scale non-incumbents who have both platform
positions and CF scores as well as all incumbents, leaving us with a total of 5,389 unique
candidate—year observations.’

The distribution of consensus ideal points in Figure 3 demonstrates an expectedly
strong partisan bimodality, with the vast majority of Democrats falling to the left of the
vast majority of Republicans.® Moreover, Figure 4 suggests that the consensus ideal points

maintain modestly strong correlations between each of the main source measures. In addi-

“To be clear, we concur with calls for scholars to carefully consider the applicability of their theories to
different domains. Our projection-based approach to estimating the remaining idiosyncratic components of
existing measures is particularly well-suited for future work on substantive differences between candidates’
ideal points across contexts.

>We provide a stability analysis of the estimated consensus ideal points in Appendix D, where we show that
the estimated consensus ideal points are robust to alternative analysis choices, such as using just the first
dimension of NOMINATE, or using only complete data.

®In Appendix E, we report and discuss relationships between ideal points estimated via CoMDS versus the
most similar alternative aggregation approaches (MD2S and PCA).
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Figure 3: Distribution of Candidates” Consensus Ideal Points by Party
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tion to characteristically high correlations overall, each original measure exhibits stronger
relationships with the consensus measure than with the other measures as reported in
Figure 2. For example, despite the fact that CF scores are essentially uncorrelated with
the other source measures among Democrats — the correlation with platforms is slightly
negative while correlation with NOMINATE is 0.017 — Democrats” CF scores correlate

with their consensus ideal point at nearly 0.2.

4.3 Assessing substantive relationships within domains of existing

measures

As discussed above, existing estimates of candidate ideal points tend to be used and in-

terpreted interchangeably in applied empirical research despite evidence suggesting that
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they are measured with a considerable amount of domain specificity. This issue is exac-
erbated by the fact that many research questions pertaining to elections, representation,
polarization, and accountability implicate a variable of interest derived from the same
source of data as an existing ideal point. For example, consider the question of whether
extremism is beneficial or detrimental for fundraising in House elections. In its simplest
form, investigation necessitates some transformation of campaign contribution data on
the left-hand side of a regression equation, and some transformation of candidate ideal
points — potentially including CF scores — on the right-hand side.

In the absence of a consensus approach, researchers without a priori expectations about
differences across measures must resort to comparing the “robustness” of results obtained
using different domain—specific measures, including one within the domain of the sub-
stantive variable of interest. If a strong relationship between an ideal point and a vari-
able of interest in the same domain is uncovered, this may be substantively meaningful or
merely a mechanical result of the variables being measured more-or-less jointly. Any dis-
agreement about statistical or substantive significance across domain-specific ideal points
will therefore pose a potentially prohibitive obstacle to drawing conclusions about rela-
tionships of interest. By identifying the shared, stable associations between different mea-
sures, our consensus approach distances ideal points from any one particular domain,
facilitating a sounder assessment of how variables within domains of existing ideal points

relate to a more domain-agnostic ideal point.”

4.3.1 Ideal points and roll-call partisan disloyalty

The connection between roll—call ideal points and partisan loyalty in roll-call voting among

members of Congress is well-established, with extreme legislators voting in lockstep with

"In Appendix E, we report all results based solely on complete cases (i.e., legislators with campaign website
platforms) or including only the three main measures in CoMDS estimation (i.e., classic CF scores, platform
positions, and first-dimension NOMINATE). We also report and discuss results using an existing consensus
ideal point measure — composite scores from Bonica (2024) — although these are estimated based on both
different source measures and aggregation approaches.
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their parties at higher rates than moderates (Carson et al. 2010; Minozzi and Volden 2013).
However, this may be partly a function of the estimation of roll-call ideal points such as
NOMINATE. Because members who vote together are implicitly assumed to have more
similar ideal points, those who frequently vote against their party — likely joining the op-
posing party in doing so — will have roll—call ideal points closer to the opposing party
than their co-partisans who never break with the party. In fact, this is precisely the cul-
prit of NOMINATE’s “AOC problem”, wherein NOMINATE places known progressives
squarely in the moderate wing of the Democratic caucus (Lewis 2022). Such models fail
to account for “ends against the middle” behavior, i.e., dissimilar members opposing leg-
islation for opposite reasons (Duck-Mayr and Montgomery 2023).8

We re-examine the relationship between legislators” ideal points and party loyalty by
performing two sets of analyses. First, we compare results based on consensus ideal points
versus NOMINATE to assess how relying on an ideal point within the same domain as the
dependent variable may distort conclusions. Second, we compare results across the three
main source measures — NOMINATE, CF scores, and platform positions. In the absence
of a consensus approach, researchers would perform such a “robustness check” to attempt
to rule out whether a result is simply an artifact of independent and dependent variables
being derived from the same domain. We maximize comparability by standardizing all
ideal points within—sample and including only observations covered by the relevant mea-
sures being compared in each analysis. Consequently, any differences in results will be
due to differences in the ideal point estimates rather than differences in sample coverage.

Our dependent variable, partisan disloyalty in roll-call voting, is based on Congres-
sional Quarterly’s (CQ) longstanding measure of party unity. CQ identifies party unity
roll—call votes as those where the majority of one party voted in opposition to the ma-

jority of the other party, and legislators” party unity scores are the share of party unity

8The canonical cases for “The Squad” involve voting against Democratic legislation they deemed insuffi-
ciently progressive, joining members of the Republican Party who deemed the same legislation insuffi-
ciently conservative.
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votes on which the legislator voted with her party. Unsurprisingly, these scores are heav-
ily left-skewed: few members side with their party on fewer than 90% of party unity
votes. We therefore calculate partisan disloyalty — a more informative measure — by
log-transforming party unity subtracted from one.’

Estimates in the first two columns of Table 1 suggest that domain—agnostic and roll-
call-specific ideal points are in agreement about the directionality of the relationship be-
tween legislators’ moderation and roll—call partisan disloyalty. As Democrats” consensus
ideal points grow more conservative/less liberal, they vote against their party significantly
more often, whereas Republicans vote against their party significantly less often as their
consensus ideal points become more conservative/less liberal. The magnitude of the co-
efficients from the NOMINATE models are exaggerated relative to the consensus models,
however, suggesting that measuring independent and dependent variables with the same
roll-call data inflates the size of relationships.

The consensus ideal points allow us to conclude that generally moderate legislators
vote against their party much more frequently than generally extreme legislators. How-
ever, comparing estimates across source measures in Table 1 suggests that without our
consensus approach, it would be difficult to ascertain this relationship when checking for
robustness across existing ideal points. Among Democrats, no relationship is detected
between CF scores and partisan disloyalty. The estimated magnitude of the relationship
based on platform positions is less than one third that of NOMINATE. Relationships be-
tween the source ideal points and partisan disloyalty are more consistent among Republi-
cans, but their magnitudes vary considerably across measures, despite the fact that models
only include legislators covered by all three. Taken together, these results elucidate how
the consensus approach allows us to draw meaningful conclusions about the strength and

size of the relationship between legislators’ moderation and partisan disloyalty in roll—call

“Plotting ideal points against all dependent variables of interest in Appendix E suggests strong nonlinearities
in the relationships, so we also control for a quadratic specification of respective ideal point measures in all
reported models.
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Table 1: Relationship Between Ideal Points and Roll-Call Partisan Disloyalty

DV: log(% Votes Opposing Party Majority)

Consensus vs. Domain Comparing Source Measures

Consensus NOMINATE NOMINATE CFScore Platform

Panel A. Democrats

Ideal Point 0.673%** 0.727*** 0.729*** 0.036 0.2171***
(0.035) (0.027) (0.043) (0.073) (0.062)
Observations 1,206 1,206 493 493 493

Panel B. Republicans

Ideal Point -0.504%** -0.651*** -0.628*** -0.352%**  -0.291***
(0.034) (0.028) (0.040) (0.048) (0.047)
Observations 1,340 1,340 660 660 660

Note: Ideal points are increasing in conservatism and rescaled within sample to have mean 0 and SD 1.
Models control for second-order polynomial. Legislator—clustered standard errors in parentheses.* p <
0.05, ** p < 0.01, ***p < 0.001

voting when component measures produce varied estimates.

4.3.2 Ideal points and campaign contributors

Whether extremists are financially advantaged in elections is a central question in recent
literature on congressional polarization. Individual donors are demonstrably extreme
compared to other members of the population, including voters, and much work sug-
gests that they contribute to extreme candidates on the basis of shared positions (An-
solabehere, de Figueiredo, and Snyder 2003; Barber 2016b; Kujala 2020). Other scholar-
ship has shown, however, that individual donors are likewise motivated by more strategic
considerations which may also lead them to support non-extremists (Gimpel, Lee, and
Pearson-Merkowitz 2008; Meisels, Clinton, and Huber 2024). In contrast to individuals,
evidence suggests that political organizations — and especially corporations — tend to
support moderates (Barber 2016a; Meisels 2025b; Thieme 2020). Reliance on contribution—
based ideal points is likely problematic for examining the relationship between candidate
positioning and fundraising success as candidates who are high—profile (such as incum-

bents) are in a position to raise funds from nationalized donors, whereas the vast majority
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of lower—profile candidates will necessarily rely on local support.

Similarly to the previous section, we perform two sets of analyses to re-examine the re-
lationship between candidates” ideal points and bases of financial support. The first com-
pares results based on consensus ideal points versus domain—specific CF scores, while the
second investigates how “robust” results would appear when comparing across existing
ideal point measures. To operationalize financial support, we log-transform the number
of distinct contributors who gave to a candidate over the course of her career as reported
in the Database on Ideology, Money, and Elections (Bonica 2024). Focusing on number
of donors rather than donation totals helps to avoid capturing differences in the wealth of
donors who support candidates with different ideal points, instead capturing differences
in the general size of candidates” bases of support. Additionally, we take the same steps
as before to maximize comparability across ideal point models by rescaling measures and
subsetting to common observations.

Estimates from the first two columns of Table 2 suggest that basic conclusions about
candidate extremism and financial support differ substantially depending upon whether
consensus or domain-specific ideal points are used. Among both Democrats and Re-
publicans, financial base decreases substantially with more conservative consensus ideal
points. This effectively suggests that general extremism is financially advantageous for
Democrats whereas general moderation is financially advantageous for Republicans. In
contrast, there is a positive association between CF score moderation and financial sup-
port among candidates of both parties, and coefficient magnitudes are more than twice
as large in CF score models than in consensus ideal point models. Therefore, the shared
component across existing ideal point measures — as captured by consensus ideal points
— exhibits a fundamentally different relationship with candidates’ financial support than
CF scores, both in terms of substantive size and even directionality.

Given the discrepancy between results based on domain—specific versus domain—-agnostic

measures, it is perhaps unsurprising that a “robustness check” comparing results across
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Table 2: Relationship Between Ideal Points and Fundraising Success

DV: log(Number of Unique Campaign Donors)

Consensus vs. Domain Comparing Source Measures

Consensus CFScore NOMINATE CF Score Platform

Panel A. Democrats

Ideal Point -0.373*** 0.839*** 0.221** -0.811*** 0.051
(0.073) (0.072) (0.073) (0.065) (0.066)
Observations 2,629 2,629 516 516 516

Panel B. Republicans

Ideal Point -0.423*** -0.963*** -0.111* 0.350%** -0.120*
(0.062) (0.057) (0.055) (0.066) (0.061)
Observations 2,760 2,760 678 678 678

Note: Ideal points are increasing in conservatism and rescaled within sample to have mean 0 and SD 1.
Models control for second-order polynomial. Candidate—clustered standard errors in parentheses.* p <
0.05, ** p < 0.01, ***p < 0.001
different existing ideal points in the absence of our consensus approach does not provide a
clear substantive takeaway. Note that estimates from CF score models in Table 3 are of dif-
ferent signs when comparing to the consensus model versus other source measure models.
While the former includes all candidates covered by CF scores and either NOMINATE or
platform positions, the latter includes only candidates covered by all three. As noted by
Meisels (2025a), non-incumbents (who tend to be worse fundraisers) have far more ex-
treme CF scores than incumbents, yet this is not the case for other measures. Even among
the complete cases covered by all three measures, there is substantial disagreement across
source measures. While CF scores suggest that extremism is associated with a greater fi-
nancial base, platform positions and NOMINATE suggest that, if anything, moderation
is associated with a greater financial base. In all, the comparison of results across exist-
ing ideal points demonstrates that absent a consensus approach such as ours, researchers

would be precluded from drawing a coherent overall conclusion.
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4.3.3 Ideal points and lexical diversity

While much work investigating speeches, press releases, and platforms has focused on ide-
ological content, complexity is another important dimension of political texts. The “dumb-
ing down” of political rhetoric across time, particularly with regard to State of the Union
addresses, has received both popular and scholarly attention (Benoit, Munger, and Spir-
ling 2019). Related research has investigated how electorate expansion as manifested via
election rounds (Di Tella et al. 2025) or franchise extension (Spirling 2016) corresponds
to the linguistic sophistication of elite rhetoric. Another strand of work evaluates the re-
lationship between ideological positions and linguistic complexity of candidates/parties
(e.g. Schoonvelde et al. 2019; Tetlock 1983), generally finding that greater conservatism is
associated with less complex language. These studies typically compare the rhetorical so-
phistication of politicians belonging to conservative and liberal parties (e.g. Republicans
and Democrats in the US).

To assess whether there exists a within-party relationship between conservatism and
lexical diversity, we once again perform analyses comparing results based on consensus
ideal points to results based on domain-specific ideal points, as well as comparing results
across three existing ideal point measures. To capture lexical diversity, we rely on cam-
paign website platforms — one of the only longform corpuses covering large swaths of
non-incumbents (Meisels 20252).!° The aforementioned research on linguistic sophistica-
tion employ a wide variety of measures which consider features such as the length and
complexity of words, sentences, and documents as a whole. Unlike the more formal texts
of interest in such studies, campaign platforms frequently feature bulleted lists and many
subheadings which are not complete sentences. Because the syntax of this corpus does not
lend itself well to metrics relying upon the syntactical features of natural sentences, we rely

on a simple metric of lexical diversity, Carroll’s Corrected Type-Token Ratio (CTTR) (Car-

1Tn contrast, numerous sources of data can be used to study sitting legislators’ lexical diversity, such as
press releases or congressional speeches.
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Table 3: Relationship Between Ideal Points and Lexical Diversity

DV: Campaign Platform Corrected Type-Token Ratio (CTTR)

Consensus vs. Domain Comparing Source Measures

Consensus Platform NOMINATE CF Score Platform

Panel A. Democrats

Ideal Point 0.376*** 0.477*** 0.156 -0.344 0.287
(0.090) (0.080) (0.193) (0.203) (0.178)
Observations 1,836 1,836 516 516 516

Panel B. Republicans

Ideal Point -0.542%** -0.729*** -0.064 0.057 -0.633***
(0.064) (0.064) (0.122) (0.144) (0.129)
Observations 1,994 1,994 678 678 678

Note: Ideal points are increasing in conservatism and rescaled within sample to have mean 0 and SD 1.
Models control for second-order polynomial. Candidate—clustered standard errors in parentheses.* p <
0.05, ** p < 0.01, ***p < 0.001
roll 1964). This measure proxies conceptual complexity of text using the ratio of unique
words to total words in the document, then applies a correction to account for the ratio’s
sensitivity to document length by swapping out the total words in the denominator for

the square root of double the total words.

Results using both consensus and domain—specific ideal points in Table 3 demonstrate
that intraparty moderation — not liberalism, as past studies suggest — is associated with
greater rhetorical sophistication. However, among both Democrats and Republicans, consensus—
based estimates are more modest than platform-based estimates. Comparing coefficients
across source measures, however, suggests that this relationship would be undetectable
when performing a robustness check in the absence of our consensus approach. While
the platform-based estimates are smaller (and in the case of Democrats, statistically in-
significant at traditional levels) among complete cases compared to incomplete cases, the
other two ideal point measures disagree on sign and magnitude. Without the estimates
based on consensus ideal points, it would be unclear whether strong relationships solely
in the case of platform-based ideal points are simply due to being measured using the

same source of data as the dependent variable.
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5 Conclusion

Across political science subfields, numerous ongoing debates require estimates of political
actors’ ideal points. Unsettled research questions at the forefront of American politics,
for example, necessitate estimates of congressional candidates” positions. Extant work
documents weak intraparty relationships between estimates based on different sources of
data and measurement approaches, suggesting that each measure may be a mixture of a
more domain—agnostic ideal point common across measures, as well as a domain—specific,
idiosyncratic component (Barber 2022; Meisels 20254; Tausanovitch and Warshaw 2017).
However, the quantity of interest in most applied studies is a more general concept of
candidate “positioning” or “ideology”, leading scholars to treat different measures more-
or-less interchangeably.

We propose consensus multidimensional scaling (CoMDS) as an estimation approach
which better aligns with how ideal points tend to be used in practice. While assessment
of results’ robustness across measures is commonly employed to ensure findings are not
driven by any one ideal point measure, we have shown that existing measures may dis-
agree about not just the substantive size of basic relationships at the forefront of ongoing
debates, but also their directionality. Therefore, in the absence of a consensus approach
such as ours, researchers will be precluded from drawing meaningful conclusions about
relationships of interest. In contrast, consensus ideal points facilitate investigation of rela-
tionships between the component which is shared across alternative ideal point measures
and variables of interest.

Beyond the usage of consensus ideal points of congressional candidates to investi-
gate additional relationships of interest, there are a number of aspects of the approach
introduced here which open up avenues of future research. CoMDS does not require re-
searchers to jointly model the outcomes from different data sources, allowing for encod-

ing of different underlying behavioral models across contexts. This flexibility is further
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enhanced by the ability to handle differential amounts of missingness across source mea-
sures, and resulting consensus ideal points are likewise invariant to rescalings or rotations
of source measures.

The customizability of CoMDS makes it well-suited for the estimation of other actors’
ideal points as well as the incorporation of additional source measures as they emerge.
While we have focused on three broad classes of existing congressional candidate ideal
points, newer estimates from LLMs or social media venues can be easily included along-
side other source measures. This allows for future examination of whether and how con-
sensus ideal points change with the inclusion of newer estimates. Beyond the specific con-
text of focus in our application, CoMDS may be useful in other settings where there exist
multiple measures of similar concepts which exhibit substantial disagreement in practice.
Because there is rarely a “ground truth” for latent ideal points almost by definition, our
consensus approach offers a data—driven, reconciliatory approach for researchers who are
uninterested in contextual differences between alternative measures of similar concepts.

On the flip side of identifying their shared component, the accompanying projection—
based approach we propose facilitates further investigation into the differences between
source measures. While there is clear evidence on the relatively weak relationships be-
tween estimates of congressional candidates” ideal points, it has been much more difficult
to pinpoint precisely why they differ. By decomposing each measure into a component
shared with the other measures and a remaining idiosyncratic, orthogonal component,
future work can more easily analyze relationships between the domain-specific idiosyn-
cratic factors and external variables of interest. In turn, this can spur new avenues of

research into differences in candidates’ strategic behavior across venues and activities.
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A Additional Discussion

A.1 Relationship with MD2S (Enamorado, L6pez-Moctezuma, and
Ratkovic 2021)

Closest related to our method is an approach introduced in Enamorado, L6pez-Moctezuma,
and Ratkovic (2021) called MD2S. Enamorado, Lopez-Moctezuma, and Ratkovic (2021)
focus on the setting in which researchers have two data sources and have access to the out-
comes from both data sources: YV, Y® € R™*?. Then, they assume the following linear
data generating process:

YO 7@ @ 4 2 (4)

{y(l) — 77 4 () 4 ()
where to estimate the model, they further impose low-rank assumptions on v(*), orthog-
onality constraints on T'*) and v(*), and normality assumptions on ). The proposed
algorithm then estimates {Z*, T™" T® 1) 1} by jointly modeling both Y and Y.

Comparing the assumed data generating process in Equation (4) with the assumed
data generating process for CoMDS in Equation (1) helps highlight the differences in the
methods. Recall, in Equation (1), we assume that the outcomes can be written as Y'*) =
9 (Z*+v))+£6). However, we do not place any restrictions on the functional form of g(*)
or the error term £(*). As such, we can view the data generating process in Equation (4)
as a special case of Equation (1), where the function ¢ is equal to a linear mapping for
all data sources. Assuming that all outcomes must have a linear relationship with the true
ideal point Z* can be relatively restrictive and does not map to the underlying behavioral
models posited for many existing data sources. For example, NOMINATE often assumes
that yea/nay votes follow a logistic function of the underlying ideal points.

A.2 Interpreting CoMDS as a constrained MDS problem

Another way to interpret CoMDS is by considering its equivalency as a constrained mul-
tidimensional scaling problem. More specifically, define the block diagonal matrix D =
diag(DW, ... D)) € R9*" and suppose we applied ordinary multidimensional scal-
ing (MDS) (Torgerson 1952) to D with a particular constraint — specifically,

Ziyps = argmin ¥ (Dy; — d(2:, %)), (5)

ZGRSHXT i<j
subject to the following constraints:

ZW L)
(i) Z = ; , (i) WU W) are r x r diagonal matrices, and (iii) Z € R™".
ZW 5)



Then the constrained MDS solution (5) satisfies
7xW 1L

Z?\/[DS = ) (6)
7Z*W )

where Z* and W), ..., W) are the solution to the CoMDS problem from (3).

B Illustrative simulations

In this section, we provide a series of illustrative simulations to build up intuition be-
hind CoMDS and to highlight key advantages of CoMDS over existing approaches. In
particular, we compare CoMDS to simply applying PCA to the concatenated source ideal
points [Z(W, ..., Z(9)], concretely demonstrating four important advantages of CoMDS —
namely, (i) its flexibility for handling nonlinear data-generating processes in Section B.1,
(ii) its invariance to arbitrary shifts, rescalings, and rotations in the source ideal points
in Section B.2, (iii) its ability to identify consensus patterns even under imbalanced and
correlated settings in Section B.3, and (iv) its inherent ability to handle missing data.

B.1 Nonlinear data-generating simulation

To begin, recall the posited ideal point model (1) from Section 2, where we assume the
data source Y(*) is generated from some function g,(-) of the ideal point estimates Z*) plus
possible noise €*):

Yy () — gs(Z(S)) + €8

Previous methods such as PCA (Bonica 2024) and MD2S (Enamorado, Lépez-Moctezuma,
and Ratkovic 2021)!! assume that g,(-) takes the form of a linear function. This linear as-
sumption is often restrictive and may not hold in practice. CoMDS, on the other hand, does
not assume a linear form for g,(-) and instead aims to preserve the pairwise distances be-
tween samples in the source ideal point space and in the consensus ideal point space. This
distance-preserving property gives CoMDS more flexibility to capture possibly nonlinear
relationships in g,(-).

To illustrate this ability to handle nonlinearity, we simulate two data sources Y") and
Y ® using the same underlying set of 2-dimensional ideal point estimates Z* — one with
a linear g¢;(-) and one with a nonlinear g¢,(-). Specifically, we simulate the true consensus
ideal point estimates Z* from a two-dimensional uniform distribution with n = 500 sam-
ples. We then let the first data source Y1) = Z* € R%*2 (i.e., g,(-) is the identity function)
and the second data source Y® € R?%*3 to be the nonlinear “swiss roll” transformation

The matrix factorization model of MD2S is equivalent to that of JIVE (Lock et al. 2013), a popular data
integration method from the biomedical literature. While MD2S was only introduced for integrating
two datasets, JIVE provides the general formulation and software for integrating any arbitrary number
of datasets. We hence use the JIVE software implementation for all empirical comparisons in this work.
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Figure B1: (A) We simulate one data source Y ) € R59°%2 from a uniform distribution. (B) We
then apply the nonlinear swiss roll transform to Y1) to obtain a second data source Y(?) € R?00%3,
(C-E) The consensus plots from applying CoMDS, MD2S, and PCA to Y(!) and Y ?) are respec-
tively shown. Linear-based approaches such as MD2S and PCA “flatten” the swiss roll structure
and lose the original ordering of the ideal points. In contrast, CoMDS “unravels” the swiss roll and
more accurately preserves the original ideal point structure.

of Z* (Tenenbaum, Silva, and Langford 2000)'>. These two simulated data sources are
depicted in Figure B1A-B.

Since both data sources Y and Y (?) are direct (noise-less) functions of Z*, we would
expect that the estimated consensus ideal points Z* resemble Z* (which is equivalent to
Y shown in Figure B1A). However, as shown in Figure B1D-E, applying linear-based
approaches such as MD2S and PCA do not preserve the original ordering of ideal points
(from yellow to dark purple). MD2S and PCA are both designed to find a linear projec-
tion of the data sources and thus must “flatten” the swiss roll structure, resulting in the
outer tails of the roll (i.e., the bright yellows and the dark purples) being compressed to-
wards the center of the consensus space rather than being preserved as the outer edges of
the swiss roll. In contrast, CoOMDS does not assume linearity and instead focuses on pre-
serving pairwise distances. This results in the estimated CoMDS consensus plot shown in
Figure B1C, which preserves the nice gradient from yellow to dark purple.

2The swiss roll is a popular toy nonlinear transformation, wherein a 2-dimensional flat surface is “rolled”
up like a Swiss roll pastry in 3-dimensional space.



B.2 Rotation invariance simulation

Another key advantage of CoMDS is its robustness and invariance to shifts, rescalings, and
rotations of the source ideal points. Because the numerical values of ideal points are in
essence arbitrary and it’s only the relative distances between ideal points that are readily
interpretable, being invariant to such shifts, rescalings, and rotations is a desirable prop-
erty. Put differently, it is desirable that the estimated consensus ideal points do not change
if the source ideal points are arbitrarily shifted, rescaled, or rotated in any way."> How-
ever, methods such as PCA, which operate on the raw numerical values of the source ideal
points, are sensitive to such transformations and can yield different results depending on
the orientation or scaling of the input embeddings.

To illustrate the invariance property of CoMDS, we will specifically focus on the ro-
tation invariance and construct a toy simulation, wherein we first simulate the true un-
derlying consensus ideal points Z* € R'%*? with independent and identically distributed
entries from a standard normal distribution. We then consider two hypothetical scenarios:

1. Original Scenario: Applying CoMDS or PCA to estimate the consensus ideal points
from the two (unrotated) data sources: Y!) = Z* and Y? = Z*;

2. Rotated Scenario: Applying CoMDS or PCA to estimate the consensus ideal points
from the two data sources after rotating one by 60 degrees: Y = Z* and Y? =
Z*R, where R is a 2-dimensional rotation matrix that rotates the ideal points by 60
degrees.

Since the substantive meaning and interpretation of Z*R is the same as that of the unro-
tated Z*, we would like for the estimated consensus ideal points Z* from the two hypo-
thetical scenarios to be equivalent to each other.

In Figure B2A, we show that the first and second dimensions of the estimated CoMDS
consensus ideal points Z* remain unchanged between the original (unrotated) scenario
and the rotated scenario (as indicated by the perfect correlation). This is expected since
the CoMDS optimization problem (3) operates only on the pairwise distances between
ideal points, and pairwise distances are invariant to shifts and rotations of the raw ideal
point values. If additional rescalings were performed (although not applicable in this
simulation), the source-specific weights W, ..., W) in (3) would ensure that CoMDS
is invariant to such rescalings of the raw ideal point values.

In contrast, Figure B2B shows that the first two principal components (PCs) from PCA
change heavily depending on whether the source ideal points were rotated or not. This
is indicated by the low correlation between PC1 (or PC2) scores from the original (unro-
tated) scenario and the rotated scenario. Here, the lack of invariance leads to a conundrum
from an interpretation standpoint — though the input source data in the two hypotheti-
cal scenarios are substantively equivalent, the resulting consensus PCs from the two hy-
pothetical scenarios are different, thus raising questions about which consensus PCs are
“better” and should be used for further analysis or interpretation.

BImportantly, these transformations do not change the meaning of the source ideal points.
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Figure B2: Rotation invariance simulation results. (A) Scatter plots, comparing the estimated CoMDS
consensus ideal points in the original (unrotated) scenario (y-axis) versus the rotated scenario (x-
axis). The perfect correlation demonstrates CoMDS’s invariance to rotations of the source ideal
points. (B) Scatter plots, comparing the first two principal components (PCs) from PCA in the
original (unrotated) scenario (y-axis) versus the rotated scenario (x-axis). The low correlation
reveals PCA’s sensitivity to rotations of the source ideal points.

B.3 Imbalanced and correlated sources simulation

By construction, CoMDS is specifically designed to identify patterns that are shared across
all source ideal point estimates. This design is well-aligned with the goal of estimating
a consensus ideal point that reconciles multiple sources. General-purpose dimension re-
duction methods such as PCA, on the other hand, are not necessarily designed to find
such consensus structures. In fact, PCA is designed to find the patterns that maximize the
amount of variation in the data. These variance-maximizing patterns are often idiosyn-
cratic (i.e., specific to a particular source) and not present in all input data sources.

In practice, two common scenarios where the variance-maximizing patterns are likely
to be idiosyncratic and found only in a single data source are (i) when one data source
has a large number of features (or components) or (ii) when one data source has a high
amount of correlation between its features (or components). Before illustrating this via
simulations, we emphasize that such scenarios are practically relevant in the context of
ideal point estimation. As an example of the imbalanced dimensions scenario, researchers
may want to find the consensus between traditional ideal point estimates (e.g., NOMI-
NATE and CF scores), which are 1- or 2-dimensional, and newer embeddings such as
those generated from LLMs, which can easily output latent embeddings with hundreds
of dimensions. Additionally, researchers may want to incorporate multiple variants of
an ideal point estimation method (e.g., including different variants of CF scores (Bonica
2014, 2018, 2024) ), which are known to be highly correlated with each other.

Imbalanced dimensions simulation. To illustrate the pitfalls of PCA under the imbal-
anced dimensions setting, we simulate two low-dimensional data sources YV Y(® ¢
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Figure B3: Subspace correlation metric between the true consensus ideal points Z* and the esti-
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CoMDS accurately estimates the consensus ideal points under these simulated settings, PCA’s per-
formance declines as the dimensionality imbalance grows or as the amount of correlation within
an idiosyncratic data source increases. Lines indicate the measured subspace correlation, averaged
across 100 simulation replicates, and shaded areas represent £1SE.

R3%°*2 and one high-dimensional data source Y® € R30*? as follows:

y® — z+xp 4+
Y® = 7z*D® 4 2
Yy — 1Z*, Z(3)}D(3) +e®)

where Z* € R3*? js a standard normal matrix, encoding the true consensus structure;
Z®) ¢ R3*(P2) ig a standard normal matrix, capturing the idiosyncrasies in the third
data source; 51(;) YN (0,0?) is the additive noise term, where o is chosen to be half of
the standard deviation of Z*; and D), D®®, and D® are diagonal matrices that control
the strengths of the consensus and idiosyncratic components in each data source. Specif-
ically, we set DY) = D® = diag{4,2} € R**? and D® = diag{1.5,15,4,2,1,...,1} €
RP*P so that the idiosyncratic signal dominates the consensus signal in the third (high-
dimensional) data source. To assess the impact of the dimensionality imbalance, we vary
the number of dimensions p in the third data source from p = 4 to 100 and repeat each
simulation across 100 replicates.

In Figure B3, we plot the correlation between the subspace induced by the true consen-
sus ideal points Z* and the estimated consensus ideal points Z* (from CoMDS or PCA),
where higher correlations indicate better performance. More specifically, we define the
subspace correlation as the average squared singular value of the cross-product matrix be-
tween the true and estimated consensus subspaces (Bjorck and Golub 1973). Intuitively, if
the true and estimated consensus subspaces are well-aligned, then the subspace correla-
tion will be close to 1. As seen in Figure B3A, the performance of PCA deteriorates as the
number of dimensions p increases while CoMDS avoids this issue and yields an accurate



estimate of the consensus ideal points Z* even as the dimension imbalance grows.

Correlated features simulation. To illustrate the pitfalls of PCA under the correlated fea-
tures setting, we simulate two data sources Y, Y?) € R**? with independent features
and one data source Y® € R3%0*P with correlated features as follows:

vy — 1Z*, Z(l)][)(l) + M
Y@ — 1Z*, Z(2)]D(2) + 3
YO = (VI-wZ + vw Z®)1)D® 4+ £®),

where Z* € R*"*! js a standard normal matrix, encoding the true consensus structure;
ZW,Z® e R3(P-1 and ZB®) € R33! are standard normal matrices, capturing the id-

iosyncratic components in each data source; D!V = D® = diag{1, *%,..., 22} € RP?
are diagonal matrices that control the strengths of the consensus and idiosyncratic com-
ponents in the first and second data sources; D = diag{%, ey 172} € RP*? so that the

signal-to-noise ratio in Y® is similar to that in Y and Y®; w controls the weight of
the idiosyncrasies in the third data source; and ggi) LN (0, 0?) is the additive noise term,
where ¢ is chosen to be half of the standard deviation of Z*. To assess the impact of the
correlated features, we set w = 0.9, vary the amount of correlation in the third data source
by varying p from p = 1,...,5, and repeat each simulation across 100 replicates.

As shown in Figure B3B, PCA’s performance for estimating the consensus ideal points
Z* deteriorates as the amount of correlation in the third data source increases. This issue
occurs because PCA is designed to find the variance-maximizing patterns in the data,
which in this case are dominated by the correlated features that are unique or idiosyncratic
in the third data source. In contrast, CoMDS is able to effectively learn the underlying
consensus ideal points Z* even as the amount of correlation increases in the third data

source.

B.4 Missing Data

A final and important practical benefit of CoMDS is that it can still be applied even when
some source ideal points are missing. Moreover, CoMDS can be applied without having to
choose, use, and perform a missing data imputation method. Rather, in cases with miss-
ing values, terms in the CoMDS optimization problem (3) that involve the missing source
ideal points are given a weight of zero (via the missingness weights a!*) and are thus
effectively ignored in the estimation process. To better understand how the CoMDS esti-
mates change in the presence of missing data, we provide an illustrative example, where
we take the NOMINATE, CF, and campaign platform ideal point data used in Section 4,
restricted to only those observations with data from all three sources, and we compare the
estimated CoMDS consensus ideal points using the complete (non-missing) data versus
using the data with a percentage (i.e., 1, 5, 10,20%) of ideal points missing at random.
Figure B4 reveals that the estimated CoMDS consensus ideal points using the complete
data (y-axis) are highly correlated with the estimated CoMDS consensus ideal points had
a random proportion of the source ideal points been missing (x-axis). This correlation is
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Figure B4: Comparison of the consensus ideal point estimates from CoMDS using the complete
(non-missing) data (y-axis) versus using the data with a percentage of ideal points missing at
random (x-axis). Samples with missing values are shown in the top row while samples with com-
pletely observed data are shown in the bottom row, and each column shows the results under a
different percentage of missingness. The high correlations reveal that CoMDS provides similar
estimates of the consensus ideal points regardless of whether we observed the complete data or
whether some source ideal points were randomly missing.

essentially perfect when examining only the samples with complete data and > 0.98 when
examining only the samples with missing values. The strong concordance indicates that
CoMDS consensus ideal points are similar (or stable) regardless of whether we observed
the complete data or whether some source ideal points were randomly missing.

Still, there is some change, albeit generally small, in the estimated consensus ideal
points when samples have missing source values. To gain intuition on how the missing
data changes the estimated consensus ideal points, we more closely examined the can-
didates with missing values from the 10% missingness case in Figure B5 and Table B1.
Beginning with Figure B5, we show on the x-axis the change in ranking of the candidate’s
consensus ideal point estimate when there was missingness (defined as the rank of the
candidate’s consensus ideal point estimate when using the missing data minus the rank of
the candidate’s consensus ideal point estimate when using the complete data, where rank
1 indicates the most liberal candidate and rank N indicates the most conservative can-
didate). This x-axis essentially captures whether the candidate’s consensus ideal point
became more liberal (negative values) or more conservative (positive values) when we
were missing one of that candidate’s ideal point sources. On the y-axis, we show the
difference between the candidate’s missing ideal point value and the candidate’s party’s
mean ideal point value. This y-axis captures whether the candidate’s missing ideal point
is more liberal (negative values) or more conservative (positive values) than the typical
candidate in their party. The key takeaway from Figure B5 is that generally, when the
missing ideal point value appears more conservative (or liberal) than average, then leav-
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Candidate NOMINATE CF Score  Platform  When missing platform position,
percentile  percentile percentile the candidate’s ideal point looks...
Gabbard (D, HI, 2018) 79 63 98 More liberal
Cooper (D, TN, 2018) 97 95 97 No change
Cummings (D, MD, 2020) 28 65 1 More conservative
Lee (R, FL, 2022) 25 32 97 More liberal
Spartz (R, IN, 2022) 44 89 67 No change
Bishop (R, MI, 2018) 37 31 8 More conservative
Table B1

ing out this ideal point will result in the candidate’s consensus ideal point estimate to be
more liberal (or conservative). Conversely, when the missing ideal point value appears
more conservative (or liberal) than average, then generally including this ideal point in
the CoMDS estimation will pull the candidate’s consensus ideal point estimate towards
being more conservative (or liberal), as one would expect.

Furthermore, in Table B1, we highlight a few representative candidates from Figure B5
and list the percentile ranks of their NOMINATE, CF, and platform ideal points. Larger
percentile ranks indicate a more conservative-leaning ideal point while smaller percentile
ranks indicate a more liberal-leaning ideal point. Each listed candidate was missing their
platform ideal point, and as one might intuitively expect:

e The ideal points for candidates, whose platform ideal points appeared more con-
servative than their observed NOMINATE and CF scores (e.g., Gabbard and Lee),
appeared more liberal when their platform ideal point was missing.

e The ideal points for candidates, whose platform ideal points were similar or cen-
tral about their observed NOMINATE and CF scores (e.g., Cooper and Spartz), re-
mained similar when their platform ideal point was missing.

e The ideal points for candidates, whose platform ideal points appeared more liberal
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than their observed NOMINATE and CF scores (e.g., Cummings and Bishop), ap-
peared more conservative when their platform ideal point was missing.

C Additional discussion of CoMDS diagnostics

As introduced in Section 3.3, for a given source s, the relative error diagnostic measures
the squared error between the pairwise distances in the s source ideal point space and
the pairwise distances in the estimated consensus ideal point space, relative to the total
squared error across all S sources. Generally speaking, this diagnostic measures how
similar the source ideal point estimates are to the consensus ideal point estimates, with a
larger relative error indicating greater dissimilarity. As a concrete example, a 20% relative
error indicates that 20% of the total squared error loss across all sources is due to the s
source.

To provide additional intuition on how to interpret the relative error diagnostic mea-
sure, we conduct a brief simulation study;, illustrating how the relative error diagnostic be-
haves as we vary the strength of the idiosyncratic signal in the source ideal points. Specif-
ically, we simulate three data sources Y1, Y2 Y3 ¢ R300%2 yia;

YW =7 4 W
y@ — 7z* + (2
YO =V1—wZ 4 VwZ® + 0,

where Z* € R?%*? is a standard normal matrix that has been orthogonalized (via the
Gram-Schmidt procedure) and encodes the true consensus structure; Z®) € R30*2 is a
standard normal matrix that has been orthogonalized and encodes the idiosyncratic com-

ponent in the third data source; 52(5?) “ N(0,0?) is the additive noise term, where o is
chosen to be half of the standard deviation of Z*; and w controls the strength of the id-
iosyncratic signal in the third data source. At a high-level, the first two data sources Y
and Y® contain only the consensus information with no idiosyncratic component while
the third data source Y® is a weighted combination of both the consensus and idiosyn-
cratic components.

In Figure C1, we summarize each source’s relative error as we vary w, or the idiosyn-
cratic strength in Yy®), Unsurprisingly, when there is no idiosyncratic signal in Y® (ie.,
w = 0), all three data sources contain only the consensus information, and thus, the rela-
tive error is equal across all three sources. In other words, each source contributes equally
(ie., 1/3 = 33.3%) to the total squared error loss, and the consensus ideal point estimates
are a perfect consensus or equally similar to each source’s ideal point estimates.

As the idiosyncratic signal in Y®), controlled by w, increases, the relative error of the
third source Y'® increases while the relative errors of the first two sources YY) and Y® de-
crease. This is to say that the estimated CoMDS consensus ideal points grow increasingly
more different from the third source Y®) as w increases. This is intuitive since a larger w
corresponds to a stronger idiosyncratic signal in Y3, thereby making it less similar to the
true underlying consensus ideal points Z*.

11
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Figure C1: Relative errors of each source as we vary the idiosyncratic strength w in the third source
Y3). When there are no idiosyncrasies, each source contributes equally to the total squared error
loss and exhibits equal relative errors. As the idiosyncratic strength increases, the relative error of
the third source increases while the relative errors of the first two sources decrease.

D Diagnostics and stability analysis of candidate
positioning application

To supplement our candidate position study from Section 4, we report the recommended
CoMDS diagnostics (see Section 3.3) and conduct an extensive stability analysis (Yu and
Kumbier 2020) to ensure that the presented findings are stable and robust to alterna-
tive, but equally-reasonable analysis choices. Here, key choices in the candidate position-
ing analysis include (i) which primary sources to include in the CoMDS estimation, (ii)
whether to include only the first component of NOMINATE or both of its components,
(iii) whether to use the classic CF scores or more sophisticated variants of CF scores, and
(iv) whether or not to exclude candidates with missing source ideal point estimates. In
what follows, we evaluate how each of these choices impact the estimated consensus ideal
points from CoMDS and ultimately demonstrate that the estimated consensus ideal points
shown in Section 4 are stable and robust to these different modeling choices. Importantly,
this demonstrated stability helps to enhance the reliability and validity of our substantive
findings.

CoMDS diagnostics. Asrecommended in Section 3.3, we perform a leave-one-out anal-
ysis and assess the stability of the estimated consensus ideal points (fitted on the candi-
dates with no missingness) when leaving out each data source one at a time. Figure D1
compares the CoMDS consensus ideal points (y-axis), which included three types of in-
put sources (i.e., NOMINATE, the three CF scores, and platform positions), with the re-
estimated CoMDS consensus ideal points (x-axis) when leaving out each source type. We
observe that the correlation between the original and re-estimated consensus ideal points
is slightly lower (albeit still very high) when leaving out the platform positions compared
to leaving out NOMINATE or the three CF scores. This suggests that the platform posi-
tions provide some distinctive information that may be overlooked when only considering
NOMINATE and CF scores.
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Figure D1: Leave-one-out stability analysis. We compare the original CoMDS consensus ideal
points (y-axis) with the re-estimated CoMDS consensus ideal points when leaving out each source
type (x-axis). The high correlations indicate that the estimated consensus ideal points are stable
and robust to the exclusion of any single source type.

At the same time, the relative error diagnostic in Figure D2 reveals that when analyz-
ing the platform positions, NOMINATE, and CF scores simultaneously via CoMDS, the
platform positions have the lowest relative error among the three source ideal point types.
This indicates that the shared information across all source measures is more similar to
the platform positions than to NOMINATE or CF scores, or conversely, that the amount of
remaining idiosyncratic variation, which is orthogonal to the shared component, is lower
among platform positions relative to CF scores and NOMINATE. Taken together, these
diagnostics suggest that while the platform positions provide distinctive information that
is not fully captured by NOMINATE or CF scores, they are closely aligned with the shared
component captured by the consensus ideal points.
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Figure D2: Relative error diagnostic
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Figure D3: Stability across modeling choices. We compare the original CoMDS consensus ideal
points (y-axis) with the re-estimated CoMDS consensus ideal points when using only the first
NOMINATE component (left), one source of CF scores (middle), and only including candidates
with complete data across all sources (right). The high correlations indicate that the estimated
consensus ideal points are stable and robust to these different modeling choices.

Stability across other modeling choices. Beyond the choice of input sources, we further
assess the stability of the CoMDS consensus ideal point estimates across other model-
ing choices. Specifically, while we chose to use both NOMINATE components and three
variants of CF scores' in the original CoMDS analysis (namely, the classic CF scores, the
dynamic variant, and DW-DIME (Bonica 2014, 2018, 2024) ), we could have used only the
first NOMINATE component or included only the classical variant of CF scores. The left
two panels of Figure D3 reveal that these alternative modeling choices yield very similar
consensus ideal point estimates, as indicated by the high correlations. The rightmost panel
of Figure D3 compares the consensus ideal estimates when CoMDS was estimated using
only the subset of candidates with complete data (i.e., no missing source ideal points) as
opposed to using the larger set of candidates who have at least two of the three sources
available (as used in the main analysis). Similar to before, this comparison revealed a
high correlation, indicating that this choice does not substantially change the estimated
consensus ideal points.

Stability across missing data imputation choices. Recall that in the analysis including
candidates with possibly missing source ideal points, we applied CoMDS without imput-
ing the missing values since CoMDS can naturally handle missing data by setting their

missingness weights al*) to zero. In Figure D4, we compare these CoMDS consensus ideal
point estimates to what we would have obtained had we first imputed the missing source
ideal points using various data imputation methods and then applied CoMDS to this im-
puted dataset. Since different imputation methods generally impose different assump-
tions on both the data-generating process and the missingness mechanism, we considered
three imputation methods that are popularly used in practice: RF-based imputation using

Each CF score source is given a 3 weight so as to not overly-emphasize CF scores relative to NOMINATE
and the platform positions.
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Figure D4: Stability between original CoMDS consensus ideal points without imputation (y-axis)
and the CoMDS estimates after performing missing data imputation (x-axis) using RF-based im-
putation with ‘MissForest’ (left), MICE imputation (middle), and Amelia imputation (right). The
high correlations indicate that the estimated consensus ideal points are stable and robust with re-
spect to the handling of missing data.

missForest (Stekhoven and Biithlmann 2012), multivariate imputation by chained equa-
tions (MICE) (Van Buuren and Groothuis-Oudshoorn 2011), and Amelia (Honaker, King,
and Blackwell 2011). From Figure D4, we see that consensus ideal point estimates from
CoMDS (without imputation) are highly correlated with the CoMDS estimates obtained
after imputing the missing values no matter the choice of imputation method, though the
correlation with the RF-based imputation is highest. We also show the correlation between
the CoMDS consensus ideal point estimates when using different data imputation meth-
ods or different runs of the same data imputation method in Figure D5. Interestingly, the
correlations observed between CoMDS estimates using the same imputation method but a
different random draw (Figure D5) are frequently lower than the correlations observed be-
tween CoMDS without imputation versus with different imputation methods (Figure D4).
This is to illustrate that data imputation methods often introduce more instabilities into an
analysis, complicating the substantive interpretation. Further, it underscores the benefit
of CoMDS'’s ability to naturally handle missing values without the need for an imputation
step during data preprocessing.
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Figure D5: Stability of CoMDS ideal point estimates when using different missing data imputa-
tion methods: RF-based imputation with “‘MissForest’, two random draws from MICE imputation
(labeled v1 and v2), and two random draws from Amelia imputation (labeled v1 and v2).
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E Additional candidate positioning analyses

To supplement the substantive results reported in the paper, here we present additional
analyses which may be of interest given other possible sample selections, aggregation ap-
proaches, or modeling choices. In particular, we compare our CoMDS estimates of House
candidates’ ideal points to estimates obtained with alternative aggregation methods, sub-
set to complete cases (i.e. no missingness across source measures), and assess CoMDS
estimates based on just the three main variants of source measures (i.e. NOMINATE first-
dimension, classic CF scores, and campaign platform positions).

E.1 Comparisons to alternative methods

As discussed in Appendices A.1 and B, the aggregation approaches most closely related
to CoMDS are MD2S and PCA, although crucial differences between all three are highly
relevant in our particular application. To assess how different the methods are in practice,
when applied to our substantive context, we re-scaled candidates” aggregate ideal points
using the same sources of data with the only difference being the use of MD2S or PCA
instead of CoMDS. Figure E.1 plots relationships between CoMDS-based ideal points and
the alternative ideal points. Unlike CoMDS, MD2S and PCA cannot handle missingness
directly, so we use random forest imputation'® and Bayesian PCA, respectively, while also
showing relationships among complete cases where differences in the handling of miss-
ingness should play less of a role in driving correlations downwards.

Figure E.1 demonstrates strong but imperfect correlations between estimates produced
by CoMDS versus alternative aggregation approaches. Even within party, most correla-
tions remain well above 0.5. The results suggest that, at least within our application and
sample, Bayesian PCA provides estimates which are more similar to CoMDS than MD2S.
Imperfect correlations between estimates are likely due in part to alternative methods’ im-
plicit overweighting of correlated source measures, as well as their imputation approaches
which affect the underlying space in which even the subset of complete cases were origi-
nally scaled.

While these results showcase the relationships between estimates of House candidates’
ideal points reached with different methods, holding constant the underlying sources of
data, an existing, off-the-shelf composite measure which constitutes an attractive alterna-
tive for applied researchers is found in Bonica (2024). This approach applies Amelia im-
putation and PCA to a variety of roll-call and contribution-based measures, which means
that such estimates differ from those obtained with CoMDS along both source data and
methodological dimensions. Given composite scores” source data, it is unsurprising that
Table E1 shows that using them in substantive analyses in the domains of roll-call vot-
ing and campaign contributions produce results which are highly similar to those with
domain-specific NOMINATE and CF scores, respectively, reported in the main results.
Conversely, there is little relationship between the composite score and lexical diversity,

I5RF imputation was chosen to maximize (potential) similarity with CoMDS as Figure D4 shows that this
was the imputation method which resulted in estimates most similar to those reached with our non-
imputed CoMDS approach.
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Figure E1: Relationships Between Ideal Points Estimated via CoMDS and Alternative Aggregation
Methods
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Table E1: Main Results with Bonica Composite Score

Roll-Call Disloyalty —# Campaign Donors Lexical Diversity

Dems Reps Dems Reps Dems Reps

Composite Score ~ 0.793** -0.737**  0.682** -0.757** -0.191  0.103
(0.045)  (0.055)  (0.094)  (0.073)  (0.106) (0.075)

Observations 1,208 1,345 2,628 2,759 1,835 1,993
*p <0.05 % p <0.01, * p < 0.001

which is consistent with DW-NOMINATE and CF scores’ lack of significant relationships
with lexical diversity.

E.2 Robustness to including only complete cases

Given CoMDS’ ability to handle missing data directly, the main analyses based on con-
sensus ideal points include cases where a candidate had nonmissing estimates for two
out of the three main source measures. However, as detailed in Appendix B, missingness
will affect estimates to the extent that a candidate’s missing source estimate would differ
from her nonmissing source estimates. Moreover, due to the nature of the source mea-
sures we include, the target universe of each differ systematically, such that each measure
has highly nonrandom missingness. For example, NOMINATE relies upon congressional
roll-call records and therefore excludes all candidates who fail to win election to Congress,
a population that differs systematically from those who win election. Here, we re-run all
analyses to assess consensus ideal points among the subset of complete cases, i.e. legisla-
tors with campaign website platforms.

Figure E2 shows modestly higher correlations among the source measure estimates of
these complete cases than among all of the cases included in the main analyses. The largest
increases are evident for correlations between CF scores and platform positions, which is
relatively unsurprising given that both measures cover a large number of nonincumbent
candidates, all of whom are dropped from the complete case analysis by virtue of missing
a NOMINATE score. Correlations between NOMINATE and CF scores of complete cases,
i.e. those who have campaign platforms, increase only slightly, and correlations between
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Figure E2: Correlations Between Source Measures Among Complete Cases

2_
21 2
17 S 14 S 14
§ o .
1S €
S 9 S P S
kS| . < -1
r=0953| o r=0845| o
-1 r=0638 ,‘ r=0480 -2
r=0.056 _ r r=0.260 _
-05 0.0 05 10 -05 0.0 05 1.0 -1 0 1
NOMINATE NOMINATE CF Score

Figure E3: Distribution of Consensus Ideal Point Among Complete Cases
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NOMINATE and platform positions remain identical as all candidates with both likewise
have a CF score. Additionally, Figure E3 suggests that the distribution of consensus ideal
points among complete cases is relatively similar to that among all cases included in the
main sample, albeit with slightly less overlap between parties.

Additionally, Figure E4 shows that the correlations between consensus ideal points and
CF scores become modestly stronger while correlations between consensus ideal points
and NOMINATE and platform positions become modestly weaker when subsetting to
complete cases. However, relationships with NOMINATE and platform positions never-
theless remain stronger than relationships with CF scores among complete cases. This
suggests that the universe of complete cases have consensus ideal points that are more
strongly related to their CF scores compared to the universe of cases with missingness,
but consensus ideal points nevertheless exhibit stronger relationships with the other two
measures among both complete and incomplete cases.

Table E2 re-estimates the main substantive results based on the consensus ideal points
among complete cases only. The roll-call disloyalty estimates for both Democrats and
Republicans are qualitatively similar yet smaller among complete cases, suggesting even
greater overestimation of the domain-specific measure in this context. The campaign
donor results suggest little meaningful relationship between consensus ideal point and
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Figure E4: Relationships Between Source and Consensus Measures Among Complete Cases
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Table E2: Consensus Ideal Point Results Among Complete Cases

Roll-Call Disloyalty ~# Campaign Donors Lexical Diversity

Dems Reps Dems Reps Dems Reps

Consensus  0.574*** -0437** 0002  -0.088  -0.023 -0.301*
(0.050)  (0.044) (0.080)  (0.056)  (0.208) (0.141)
Observations 493 660 516 678 516 678

*p <0.05 *p<0.01,** p < 0.001

financial base among complete cases. This is consistent with the highly mixed results
across complete cases based on source measures reported in Table 2. Finally, the lexical
diversity results based on consensus ideal points are even smaller among complete cases.
Overall, subsetting the substantive results to complete cases suggests that domain-specific
estimates are, if anything, even more overstated compared to consensus ideal points.

E.3 Robustness to scaling three main measures

When using CoMDS to scale the positions of House candidates, we relied upon both di-
mensions of NOMINATE and the classic, dynamic, and NOMINATE-targeted variants of
CF scores, in addition to unidimensional platform positions. Scholars typically focus on
the first dimension of NOMINATE as well as classic CF scores, however. Here, we re-
estimate candidates’ ideal points using just these three main measures, and replicate all
substantive results with the estimates based on three such measures. Figure E5 suggests
that the distribution of consensus ideal points based on three main measures is relatively
similar to the distribution based on the original set of measures, aside from somewhat less
spread among Democrats’ consensus ideal points. Likewise, Figure E6 confirms that rela-
tionships between each of the source measures and the consensus ideal points look rela-
tively similar regardless of whether the three main source measures versus the original set
of source measures are used. Finally, Table E3 reports substantive results using consensus
ideal points estimated with the three main source measures. Overall, takeaways remain
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Figure E5: Distribution of Consensus Ideal Point Scaled with Three Main Measures
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Figure E6: Relationships Between Source and Consensus Measures Based on Three Main Measures
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Table E3: Relationship Between Consensus Ideal Points Based on Three Main Measures and Sub-

stantive Variables

Partisan Disloyalty ~ # Campaign Donors

Lexical Diversity

Dems Reps Dems Reps Dems Reps
Consensus 0.631***  -0.556*** -0.260*** -0.475**  0.478*** -0.538"**

(0.034) (0.032)  (0.059) (0.057) (0.080)  (0.063)
Observations 1,206 1,340 2,629 2,760 1,836 1,994

*p < 0.05,* p < 0.01,**p < 0.001

qualitatively similar to those from the consensus ideal points which include other vari-
ants of source measures aside from the lexical diversity results among Democrats, which
become essentially equivalent to the results originally reached using platform positions.
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E.4 Additional analyses

Figures E7, E8, and E9 present scatterplots of the basic bivariate relationships captured
by our substantive analyses, with loess curves fit by party. In all cases, strong quadratic
components appear to be present. As such, we include controls for a squared specification
of respective ideal point measures in all substantive regressions reported in the main and

supplementary analyses.

Figure E7: Ideal Points and Roll-Call Partisan Disloyalty
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Figure E9: Ideal Points and Lexical Diversity
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